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For a class of analytic functions f (z) defined by Laplace�Stieltjes integrals the
uniform convergence on compact subsets of the complex plane of the Bruwier series
(B-series) ��

n=0 *n( f ) (z&nc)n

n! , *n( f )=f (n)(nc)+cf (n+1)(nc), generated by f (z) and
the uniform approximation of the generating function f (z) by its B-series in cones
|arg z|�.< ?

2 is shown. � 2000 Academic Press

1. INTRODUCTION

In order to solve the difference-differential equation �m
k=0 :k f (k)

(z&(m&k) c)=0, :k # C, c{0 L. Bruwier [1] has used series of the form

f (z)= :
�

n=0

*n
(z&nc)n

n !
= :

�

n=0

*n bn(z). (1.1)

If (see [1])

*=lim sup
n � �

|*n |1�n<
1

e |c|
(1.2)

this series converges uniformly on compact subsets of the complex plane C
so that the sum f (z) is an entire function. If *> 1

e |c| the series is divergent,
whereas with *= 1

e |c| different cases can occur. In a paper about series of
the form (1.1)��called Bruwier series��O. Perron [3] pointed out that
Bruwier has used the uniqueness of expansion (1.1) in his studies without
any proof. Therefore in [3] subsequently the uniqueness was proven and
the following characterization of all entire functions f (z) with a representation
(1.1) was given.

doi:10.1006�jath.2000.3511, available online at http:��www.idealibrary.com on

281
0021-9045�00 �35.00

Copyright � 2000 by Academic Press
All rights of reproduction in any form reserved.

1 Partially supported by the Austrian Science Foundation Project P12176-MAT.



Theorem 1 [O. Perron]. The entire function f (z) can be represented by
a convergent B-series with *< 1

e |c| if and only if the inequality

| f (n)(cnx)|�k \ :
|c|

e&x+
n

, 0<:<1, k>0 (1.3)

is satisfied for all x # [0, 1] and n # N0 .

Remark 1. A completely different characterization of those entire
functions f (z) with a representation (1.1) will be shown in Section 2 of this
paper.

Now, it is easily shown that if an entire function f (z) has a representation
(1.1) then the coefficients have the form

*n( f )= f (n)(nc)+cf (n+1)(nc), n # N0 (1.4)

e.g. all entire functions of exponential type _< 1
|c| have convergent resp.

Mittag�Leffler-summable representations (1.1) (see [6]).
Because of (1.4) each function��even not entire ones��can be associated

with a formal B-series

B(z; c, f )= :
�

n=0

*n( f )
(z&nc)n

n !
(1.5)

generated by f (z) if the coefficients *n( f ) are defined. If a B-series con-
verges at a point z0 # C then the series converges uniformly on compact
subsets of C and the sum B(z; c, f ) is an entire function. Of course, if f (z)
is not entire we have B(z; c, f ){ f (z). In Section 3 (Theorem 4) it will be
shown that for a class of functions analytic in the half plane Rz>0, which
can be represented by Laplace�Stieltjes integrals, B(z; c, f ) (resp. a slightly
modificated B-series, cf. (3.10)) converges for all c>0 and approximates
the generating function f (z) uniformly on cones |arg z|�.< ?

2 if c>0 is
sufficiently small.

Remark 2. In [2] W. A. J. Luxemburg discussed the approximation of
functions of the form

f (z)=z |
1

0

d+(t)
1+zt

, (1.6)

+(t) a Lebesgue�Stieltjes measure of finite total variation on [0, 1], by Abel
series. For small c>0 the Abel series of f (z) approximates f (z) uniformly
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in half planes Rz�x0>&1. According to Sheffers classification of sequences
of polynomials (see [5]) the interpolation polynomials of Abel

a0(z)#1

an(z)=
z(z&nc)n&1

n !
, n # N

and the Bruwier polynomials

bn(z)=
(z&nc)n

n!
, n # N0

belong to the same class of Sheffer polynomials (see [6]). Therefore it is
not surprising that similar results can be proven for B-series as well as Abel
series.

2. REPRESENTATION OF ENTIRE FUNCTIONS BY B-SERIES

This problem is discussed very extensively in papers [3] and [6]. For
the reader's convenience only the most important results are summarized in
this section: The polynomials bn(z)=(z&nc)n�n ! are Sheffer polynomials
with the generating function

ezw(t)

1+cw(t)
= :

�

n=0

tnbn(z). (2.1)

Here w(t) is the absolutely smallest root of the transcendental equation
wecw=t which can be expanded into a power series of the form

w(t)= :
�

n=1

(&nc)n&1

n !
tn. (2.2)

The radius of convergence is equal to 1
e |c| . If Kt is the circle |t|< 1

e |c| then
Kt is mapped conformal to the compact convex domain w(Kt) bounded by
the points w with |cwecw+1|=1, Rcw� &1. At t= & 1

ec w(t) has a bifurca-
tion point although the series (2.2) is convergent at this point. If |t|< 1

e |c|

(2.1) implies

ezw=(1+cw) :
�

n=0

(wecw)n bn(z). (2.3)
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If f (z) is an entire function of exponential type which has a conjugate
indicator diagram D( f )/w(Kt) then the well known Po� lya-representation
of f (z) implies

f (z)=
1

2?i �
1

ezwF(w) dw

=
1

2?i
:
�

n=0

bn(z) �
1

(1+cw)(wecw)n F(x) dw

= :
�

n=0

*n( f ) bn(z) (2.4)

with the coefficients

*n( f )=f (n)(nc)+cf (n+1)(nc)

=
1

2?i �
1

(1+cw)(wecw)n F (w) dw (2.5)

and the Laplace�Borel transform F(w)=��
n=0

n ! fn
wn+1 of the entire function

f (z)=��
n=0 fnzn. 1 is a contour in w(Kt) containing D( f ) in its interior.

This result can be summarized in the following.

Theorem 2 (see [6]). Each entire function f (z) of exponential type
having a conjugate indicator diagram which is contained in the compact con-
vex domain w(Kt) bounded by the points w satisfying |cwecw+1|=1,
Rcw�&1, can be expanded into a convergent B-series.

Remark 3. Because of Theorem 2 we now have a second characteriza-
tion of all those entire functions which can be expanded into a convergent
B-series, completely different from Perron's one mentioned in the introduction.

Remark 4. Conversely, the sum of convergent B-series is an entire func-
tion of exponential type whose conjugate indicator diagram lies in w(Kt).

3. B-SERIES OF A CLASS OF ANALYTIC FUNCTIONS

Let K be the class of all analytic functions f (z) given by the Laplace�
Stieltjes integral

f (z)=|
�

0
e&zs dm(s), (3.1)
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where m(s) is a complex function of bounded variation on [0, �). That
f (z) determines the coefficient *0( f )= f (0)+cf $(0) in addition the
existence of the first moment of m(s) is assumed, which means the integrals

Mk=|
�

0
sk dm(s), k=0, 1 (3.2)

converge. Since the abscissa _c of convergence and _a of absolute
convergence are not positive each function f (z) # K is analytic in the half
plane Rz>0 so that all coefficients *n( f ) are defined and a (formal)
B-series��called B-series B(z; c, f ) generated by f (z)��can be associated
with f (z). Now, from c>0 and f (z) # K follows that

*n( f )=|
�

0
*n(e&zs) dm(s)=|

�

0
(1&cs)(&se&cs)n dm(s) (3.3)

so that we have

B(z; c, e&zs)=(1&cs) :
�

n=0

(&se&cs)n bn(z).

Because of 0�se&cs� 1
ec the B-series converges for all s�0 and the sum

B(z; c, e&zs) is given by

e&zc, 0�s<
1
c

B(z; c, e&zs)={0, s=
1
c

(3.4)

1&cs
1&cv(s)

e&zv(s), s>
1
c

where v(s) is the unique real solution of the equation

ve&cv=se&cs, s�
1
c

, (3.5)

satisfying 0�v(s)� 1
c and lims � (1�c)+ v(s)= 1

c . Furthermore, because of
e&cvv$= 1&cs

1&cve&cs<0 for all s> 1
c we have

lim
s � �

v(s)=0. (3.6)
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Remark 5. (3.4) implies *n(e&z�c)=0 for all n # N0 and c # C. But there
is no non-trivial entire function f (z) of exponential type _< 1

|c| so that
*n( f )=0 for all n. Therefore, the representation of entire functions of
exponential type _< 1

|c| by convergent resp. Mittag�Leffler summable
B-series is unique so that these functions are a uniqueness class for the
interpolation problem

*n( f )=ln , n # N0 , (3.7)

[ln] a given sequence of complex numbers (see [6] and [7]). In accord-
ance with (3.4) B(z; c, e&zs) has a (removable) discontinuity at s= 1

c so that
the integral in

B(z; c, f )= :
�

n=0

*n( f ) bn(z)= :
�

n=0

bn(z) |
�

0
(1&cs)(&se&cs)n dm(s)

=|
�

0
:
�

n=0

(1&cs)(&se&cs)n bn(z) dm(s)

=|
�

0
B(z; c, e&zs) dm(s)

which we get if we exchange summation and integration is not defined if
m(s) is discontinuous at s= 1

c . It is easy to relieve oneself of this restriction
by the following method (cf. also [4] or [7]): If we take the expression

f (z)=:0+ :
�

n=1

:n \1&
z
nc+

n

+:� e&z�c

in place of the B-series then because of

\1&
z
nc+

n

=
n!

(&nc)n bn(z) (3.8)

we get (see also Remark 7)

:0 =*0( f )

(3.9):n=
(&nc)n

n !
*n( f &:�e&z�c)=

(&nc)n

n !
*n( f ), n # N

:�=f (0)& :
�

n=0

:n
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and finally

f (z)=*0( f )(1&e&z�c)+ :
�

n=1

*n( f )
(&nc)n

n ! _\1&
z
nc+

n

&e&z�c&
+ f (0) e&z�c

=*0( f )(1&e&z�c)+ :
�

n=1

*n( f ) _bn(z)&
(&nc)n

n !
e&z�c&

+ f (0) e&z�c. (3.10)

Now, each f # K generates a series of the form (3.10) which we again call
a B-series B� (z; c, f ).

Remark 6. If the B-series B(z; c, f ) converges, obviously

B� (z; c, f )=B(z; c, f )+[ f (0)&B(0; c, f )] e&z�c (3.11)

is valid, that means if B(z; c, f )= f (z) then follows B� (z; c, f )=B(z; c, f )=
f (z) so that the series B� (z; c, f ) can be seen as a special kind of summation
of B-series.

Remark 7. Because of |(1& z
nc)

n&e&z�c|�| z
c|

2 e |z�c|�n the expansion
(3.10) of an entire function f (z) can be interpreted also as the subtraction
of factors in the B-series for f (z)& f (0) e&z�c which improves the convergence.

Now, we can prove the following

Theorem 3. For each real c>0 and z # C the B-series

B� (z; c, e&zs)=(1&cs) {1&e&z�c+ :
�

n=1

(nc)n

n!
(se&cs)n

__\1&
z
nc+

n

&e&z�c&=+e&z�c (3.12)

generated by e&zs converges uniformly and absolutely with respect to real
s�0. Furthermore, we have

B� (z; c, e&zs)={
ezs,

1&cs
1&cv(s)

[e&zv(s)&e&z�c]+e&z�c,

0�s�
1
c

s>
1
c

(3.13)
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where v(s) is the unique real solution of the equation ve&cv=se&cs, s� 1
c ,

satisfying v(s)� 1
c .

Proof. It is easy to check the uniform and absolute convergence of
B-series (3.12), so that we only have to show formula (3.13). For 0�s< 1

c

the B-series

B(z; c, e&zs)=(1&cs) :
�

n=0

(&se&cs)n bn(z) (3.14)

represents (cf. (3.4)) the function e&zs. If z=0 we have B(0; c, e&zs)=1
which together with (3.11), immediately implies B� (z; c, f )=e&zs if 0�s�
1
c . For s> 1

c the series (3.14) represents in accordance with (3.4) the
function 1&cs

1&cv(s)e
&zv(s) so that again with (3.11)

B� (z; c, e&zs)=
1&cs

1&cv(s)
[e&zv(s)&e&z�c]+e&z�c

follows. K

Remark 8. Because of the uniform convergence in s�0 B� (z; c, e&zs) is
continuous also at s= 1

c , which can also be seen directly from (3.13).

The main result of the paper is the following.

Theorem 4. If f (z) # K the B-series

B� (z; c, f )= :
�

n=0

*n( f )
(&nc)n

n ! _\1&
z
nc+

n

&e&z�c&+ f (0) ez�c, 00 :=1

(3.15)

generated by f (z) converges for each c>0 absolutely and uniformly on
compact subsets of the complex plane. In the half plane Rz>0

B� (z; c, f )=f (z)+e&z�c |
�

1�c {
1&cs

1&cv(s)
[e(z�c)(1&cv(s))&1]

+1&e(z�c)(1&cs)= dm(s), (3.16)
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and the estimate

|B� (z; c, f )& f (z)|� }+(�)&+ \1
c+} _d1+\ |Iz|

c
+d2

|Iz|2

c2 + e&Rz�c&
+2e&Rz�c |

�

1�c
|dm(s)| (3.17)

d1 , d2>0, +(s)=|
s

0
(1&cu) dm(u), +(�)=M0&cM1 ,

are valid. Furthermore, if c � 0+ B� (z; c, f ) tends to f (z) uniformly in each
cone |arg z|�.< ?

2 .

Proof. If f (z) # K we have

*n( f )=(&1)n |
�

0
(1&cs)(se&cs)n dm(s)

which together with

sn+1e&cns�
2
c

(ec)&n

immediately implies

|*n( f )|�
3

(ec)n |
�

0
|dm(s)|.

From this inequality and |(1& z
nc)

n&e&z�c|�| z
c|

2 e |z�c|�n follows that the
B-series B� (z; c, f ) generated by f (z) converges absolutely and uniformly on
compact subsets of C. Therefore the sum B� (z; c, f ) is an entire function of
the form (cf. Theorem 3, (3.12))

B� (z; c, f )=|
�

0 {(1&cs) :
�

n=0

(se&cs)n (nc)n

n ! _\1&
z
nc+

n

&e&z�c&= dm(s)

+ f (0) e&z�c

=|
�

0
[B� (z; c, e&zs)&e&z�c] dm(s)+ f (0) e&z�c

=|
�

0
B� (z; c, e&zs) dm(s). (3.18)
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The last integral in (3.18) exists since (cf. (3.13))

B� (z; c, e&zs)=O(s) if s � �.

Now, (3.13) implies

B� (z; c, f )=|
1�c

0
e&zs dm(s)+|

�

1�c {
1&cs

1&cv(s)
[e&zv(s)&e&z�c]+e&z�c= dm(s)

which gives (3.16) respectively

B� (z; c, f )& f (z)=|
�

1�c

1&cs
1&cv(s)

[1&e&(s�c)(1&cv(s))] e&zv(s) dm(s)

+|
�

1�c
(e&z�c&e&zs) dm(s)

=I1(z, c)+I2(z, c)

and

|B� (z; c, f )& f (z)|�|I1(z, c)|+|I2(z, c)|. (3.19)

It is easy to check that

|I2(z, c)|�2e&Rz�c |
�

1�c
|dm(s)| (3.20)

so that we only have to estimate I1(z, c). If we rewrite I1(z, c) to

I1(z, c)=|
�

1�c
(1&cs) e&zv(s) \|

z�c

0
e&t(1&cv(s)) dt+ dm(s)

=|
z�c

0
e&t \|

�

1�c
(1&cs) e&v(s)[z&ct] dm(s)+ dt

we get with z=x+iy (the integrand is entire with respect to t)

I1(z, c)=|
x�c

0
e&t \|

�

1�c
(1&cs) e&v(s)[x&ct] dm(s)+ dt

+ie&x�c |
y�c

0
e&it \|

�

1�c
(1&cs) e&iv(s)[ y&ct] dm(s)+ dt

=I1(x, c)+e&x�cI1(iy, c). (3.21)
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With +(s)=�s
0 (1&cu) dm(u) (note that +(s) is bounded for s� 1

c and
|v$(s)|=&v$(s)) the estimate

} |
�

1�c
(1&cs) e&v(s)[x&ct] dm(s)}
= } |

�

1�c
e&v(s)[x&ct] d \+(s)&+ \1

c++}
� } +(�)++ \1

c+}
+(x&ct) } |

�

1�c
v$(s) e&v(s)[x&ct] \+(s)&+ \1

c++ ds }
� } +(�)++ \1

c+}+ }+(!)&+ \1
c+}

�d1 } +(�)&+ \1
c+} , ! # _1

c
, �&

follows, so that we finally get

|I1(x, c)|�d1 }+(�)&+ \1
c+} |

x�c

0
e&t dt

�d1 } +(�)&+ \1
c+} . (3.22)

The estimate

} |
�

1�c
(1&cs) e&iv(s)[ y&ct] dm(s)}
� }+(�)&+ \1

c+}+| y&ct| |
�

1�c
|v$(s)| }+(s)&+ \1

c+} ds

� }+(�)&+ \1
c+}+

M
c

| y&ct|� } +(�)&+ \1
c+} \1+d2

| y|
c + ,

M= max
s # [1�c, �] } +(s)&+ \1

c+}
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implies

|I1(iy, c)|� } +(�)&+ \1
c+} \

| y|
c

+d2

| y|2

c2 + (3.23)

so that

|I1(z, c)|� }+(�)&+ \1
c+} _d1+\ | y|

c
+d2

| y|2

c2 + e&x�c& (3.24)

is valid. Now, (3.20) and (3.24) imply inequality (3.17) of the theorem. To
finish the proof let us choose c>0 so that |+(s)&+(s*)|<= for arbitrary
=>0 and all s, s*� 1

c . This is always possible since the existence of the
integrals ��

0 sk dm(s), k=0, 1, is assumed (cf. (3.2)). Now, estimate (3.17)
immediately shows the rest of the theorem. K

Remark 9. It is easily checked that the class of functions (1.6)
examined by W. A. J. Luxemburg in connection with Abel series (cf. [2]
resp. Remark 2) generates convergent B-series B(z; c, f ) and B� (z; c, f ).
With help of the representation

f (z)=|
1

0 \|
�

0

1&e&zst

t
e&s ds+ d+(t)

it can be shown that (for sufficient small c>0) f (z) is approximated
uniformly by B(z; c, f ) or B� (z; c, f ) on half planes Rz�x0>&1 also.
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