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For a class of analytic functions f(z) defined by Laplace—Stieltjes integrals the
uniform convergence on compdct subsets of the complex plane of the Bruwier series
(B-series) 2o A () EZL ) (f) =P (ne) 4+ cf "+ V(nc), generated by f(z) and
the uniform approximation of the generating function f(z) by its B-series in cones
|arg Z| << % is shown. © 2000 Academic Press

1. INTRODUCTION

In order to solve the difference-differential equation 3%_ oy f®
(z—(m—k)c)=0, 0, €C, ¢c#0 L. Bruwier [ 1] has used series of the form

0
B T

Z—i’l(,

f (L1)

If (see [1])

<L (1.2)
this series converges uniformly on compact subsets of the complex plane C
so that the sum f{(z ) is an entire function. If 1> ; |C| the series is divergent,
whereas with 1= ;i different cases can occur. In a paper about series of
the form (1.1)—called Bruwier series—O. Perron [3] pointed out that
Bruwier has used the uniqueness of expansion (1.1) in his studies without
any proof. Therefore in [3] subsequently the uniqueness was proven and
the following characterization of all entire functions f(z) with a representation
(1.1) was given.
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THEOREM 1 [O. Perron]. The entire function f(z) can be represented by
a convergent B-series with ) < - if and only if the inequality

e|c|

|f(")cnx)|<k<|| x>, O<a<l, k>0 (1.3)

is satisfied for all xe[0,1] and ne N,.

Remark 1. A completely different characterization of those entire
functions f(z) with a representation (1.1) will be shown in Section 2 of this
paper.

Now, it is easily shown that if an entire function f(z) has a representation
(1.1) then the coefficients have the form

A )= f®(me) + cf **+ Y(ne), neN, (1.4)

e.g. all entire functions of exponential type ¢ < | ; have convergent resp.
Mittag—Leffler-summable representations (1.1) (see [6]).

Because of (1.4) each function—even not entire ones—can be associated
with a formal B-series

(z—nc)"

B(zc, f)= Ozo: (1.5)

n!

generated by f(z) if the coefficients A,(f) are defined. If a B-series con-
verges at a point z, € C then the series converges uniformly on compact
subsets of C and the sum B(z; ¢, f) is an entire function. Of course, if f(z)
is not entire we have B(z; ¢, f) # f(z). In Section 3 (Theorem 4) it will be
shown that for a class of functions analytic in the half plane Rz > 0, which
can be represented by Laplace—Stieltjes integrals, B(z; ¢, f) (resp. a slightly
modificated B-series, cf. (3.10)) converges for all ¢>0 and approximates
the generating function f(z) uniformly on cones |argz| <@ <Fif ¢>0 is
sufficiently small.

Remark 2. In [2] W.A. J. Luxemburg discussed the approximation of
functions of the form

1 g
fizy=z [ 0

1.6
o 14zt (1.6)

u(t) a Lebesgue—Stieltjes measure of finite total variation on [0, 1], by Abel
series. For small ¢ >0 the Abel series of f(z) approximates f(z) uniformly
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in half planes Rz > x, > — 1. According to Sheffers classification of sequences
of polynomials (see [5]) the interpolation polynomials of Abel

ao(z) = l
_ a\n—1
a,(z) =Z(Z ne) , neN
n!
and the Bruwier polynomials
b =EZm) en,
n!

belong to the same class of Sheffer polynomials (see [6]). Therefore it is
not surprising that similar results can be proven for B-series as well as Abel
series.

2. REPRESENTATION OF ENTIRE FUNCTIONS BY B-SERIES

This problem is discussed very extensively in papers [3] and [6]. For
the reader’s convenience only the most important results are summarized in
this section: The polynomials b,(z) =(z—nc)"/n! are Sheffer polynomials
with the generating function

———= ) 1"b,(2). (2.1)
Here w(t) is the absolutely smallest root of the transcendental equation
we® =t which can be expanded into a power series of the form

n—1

(—nc)

8

w(t) = " (2.2)

n!

n=1

The radius of convergence is equal to ;5. If K, is the circle |7| < i then
K, is mapped conformal to the compact convex domain w(K,) bounded by
the points w with [ewe™ 1| =1, Rew> — 1. At r= — L w(r) has a bifurca-
tion point although the series (2.2) is convergent at this point. If |¢] <

(2.1) implies

1
elc|

e =(1+cw) OZO: (we)" b,(z). (2.3)
n=0



284 F. VOGL

If f(z) is an entire function of exponential type which has a conjugate
indicator diagram D(f) = w(K,) then the well known Pdlya-representation
of f(z) implies

1
flz)= i fﬁr e™F(w) dw

=ﬁ }i b.(2) §F (1 + cw)(wes™)" F(x) dw

= i 2l f) Dy 2) (24)

with the coefficients

A ) =" ne) + cf "+ Dinc)

1
=— fﬁ (14 cw)(we™)" F(w) dw (2.5)
2ni Jr
and the Laplace-Borel transform F(w)=3>_, Z%f" of the entire function

flz)=>%_, f.2" I'is a contour in w(K,) containing D(f') in its interior.
This result can be summarized in the following.

THEOREM 2 (see [6]). Each entire function f(z) of exponential type
having a conjugate indicator diagram which is contained in the compact con-
vex domain w(K,) bounded by the points w satisfying |cwe™+1 =1,
Rew = — 1, can be expanded into a convergent B-series.

Remark 3. Because of Theorem 2 we now have a second characteriza-
tion of all those entire functions which can be expanded into a convergent
B-series, completely different from Perron’s one mentioned in the introduction.

Remark 4. Conversely, the sum of convergent B-series is an entire func-
tion of exponential type whose conjugate indicator diagram lies in w(K,).

3. B-SERIES OF A CLASS OF ANALYTIC FUNCTIONS

Let 4" be the class of all analytic functions f(z) given by the Laplace—
Stieltjes integral

f(z)= f == dm(s), (3.1)
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where m(s) is a complex function of bounded variation on [0, co). That
f(z) determines the coefficient Aq(f)=f(0)+¢f'(0) in addition the
existence of the first moment of m(s) is assumed, which means the integrals

Me=[" s dm(s). k=01 (32)

0
converge. Since the abscissa o, of convergence and ¢, of absolute
convergence are not positive each function f(z) e #" is analytic in the half
plane Rz>0 so that all coefficients 1,(f) are defined and a (formal)

B-series—called B-series B(z; ¢, f) generated by f(z)—can be associated
with f(z). Now, from ¢>0 and f(z) e # follows that

W)= [ dale =) dm(s) = [ " (1= es)(—se=) dm(s)  (33)
so that we have

B(z;c,e )= (1—cs)

HMS

|

[N

)
|
&

3

5

[N

)

Because of 0 <se™“ <L the B-series converges for all s>0 and the sum
B(z; ¢, e™*) is given by

1
e %, 0<s<—
c
B 1
B(z;c,e )= 0, s=- (3.4)
¢
1—
S ol
1 —cu(s) c

where v(s) is the unique real solution of the equation
ve ' =y5e"%, s=—, (3.5)

satisfying 0<uv(s)<?! and lim,_ ., v(s)=1. Furthermore, because of

—cv,,/ l—cs ,—cs

e~ =1=%¢= <() for all s>1 we have

—cv

lim v(s) =0. (3.6)

§—> 0
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Remark 5. (3.4) implies 4,(e~%¢)=0 for all ne N, and c e C. But there
is no non-trivial entire function f(z) of exponential type ‘7<|17| so that
A (f)=0 for all n. Therefore, the representation of entire functions of
exponential type o <rpy; by convergent resp. Mittag-Leffler summable
B-series is unique so that these functions are a uniqueness class for the
interpolation problem

in(f):lna n6N07 (37)
{1,} a given sequence of complex numbers (see [6] and [7]). In accord-

ance with (3.4) B(z; ¢, e~*) has a (removable) discontinuity at s =1 so that
the integral in

B )= X b= X b2 [ (=) (—se ey dints)
:f“’ f (1 —cs)(—se=)" b(z) dm(s)
= JOO B(z; ¢, e %) dm(s)

which we get if we exchange summation and integration is not defined if

m(s) is discontinuous at s =1. It is easy to relieve oneself of this restriction

by the following method (cf. also [4] or [7]): If we take the expression

o0 z n
Z) =0+ a, ([ 1—=—] +a e 7
=t 2 (1)
in place of the B-series then because of

<1 —Z>n: LA (3.8)

nc

we get (see also Remark 7)

20 = 2ol f)
0, = T e =T neN )
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and finally

oo

f(z)=2o(f)(1 _e—z/C) + Z 2 f) (—nc)” {(1 _Z>"_€_z/c}

[
et n! nc

+ (0) e

= AN =+ 3 (1) byl e

!
ne1 n:

+ £(0) e=7e. (3.10)

Now, each f € A" generates a series of the form (3.10) which we again call
a B-series B(z; ¢, f).

Remark 6. 1If the B-series B(z; ¢, f) converges, obviously

B(z ¢, [)=B(z ¢, /) +[f(0) = B(0; ¢, f)] e 7 (3.11)

is valid, that means if B(z; ¢, f) = f(z) then follows B(z; ¢, f)=B(z; ¢, f) =
f(z) so that the series B(z; ¢, f) can be seen as a special kind of summation
of B-series.

Remark 7. Because of |(1—2)"—e | <|%|?¢!/n the expansion
(3.10) of an entire function f(z) can be interpreted also as the subtraction
of factors in the B-series for f(z) — f(0) e ~¢ which improves the convergence.

Now, we can prove the following
THEOREM 3. For each real ¢ >0 and z € C the B-series

(nc)n (Se—cs)n
n!

B(z;c,e )= (1—cs) {1 —e 7ty

n=1

xKl—Z)n—e—z/f]}Jre—z/c (3.12)
nc

generated by e~ converges uniformly and absolutely with respect to real
s = 0. Furthermore, we have

zs
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—Cv

where v(s) is the unique real solution of the equation ve ™" =se”

satisfying v(s) <1

Proof. 1t is easy to check the uniform and absolute convergence of
B-series (3.12), so that we only have to show formula (3.13). For 0<s<1
the B-series

B(z;c,e™)=(1—cs) Z (—se=*)"b,(z) (3.14)

represents (cf. (3.4)) the function e~*. If z=0 we have B(0;c,e ™) =1
which together with (3.11), immediately 1mplles B(z;c, f)=e *if 0<s<
1 For s>1 the series (3.14) represents in accordance with (3.4) the

function mf(s)e’z”(” so that again with (3.11)

R 1—cs
B(Z, ¢, e—zs) — 0 _cv( ) [ —zo(s) __ z/c] +e—z/c

follows. ||

Remark 8. Because of the uniform convergence in s >0 B(z; ¢, e ™) is
continuous also at s =1, which can also be seen directly from (3.13).

The main result of the paper is the following.

THEOREM 4. If f(z)e A" the B-series

B(ze, f) = i ”C)nKl—Z)n—e—z/”] +f(0)ee,  0°:=1
(3.15)

generated by f(z) converges for each ¢>0 absolutely and uniformly on
compact subsets of the complex plane. In the half plane Rz >0

l—ecs
Z ¢, f f + e—z/c J;/ { [e(z/c)(l —cv(s)) __ 1]

1 —cu(s)

+1-— e(z/c)““)} dm(s), (3.16)
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and the estimate

c

n 1 3 Fz|?
1B(z: e ) — () <‘ﬂ(00)—/1< )‘ {d1+<| e )e—W]

2075 [ dm(s) (3.17)

1/c

diody>0,  pu(s)=| (I—cu)dm(u),  p(o0)=Mo—cM,,
0
are valid. Furthermore, if ¢ — 0+ B(z; ¢, f) tends to f(z) uniformly in each
cone |argz| < ¢ <73.
Proof. 1f f(z) e # we have

(oo}

2 ) =(=1" [ (1= cs)(se )" dm(s)

0

which together with
Sn+le—cns gg (EC)_n
¢
immediately implies

3 o
2 ) <wf0 \dm(s)].

From this inequality and |(1— Z2)"—e 7| <|%|?€!¥/n follows that the
B-series B(z; ¢, f) generated by f(z) converges absolutely and uniformly on
compact subsets of C. Therefore the sum B(z; ¢, f) is an entire function of

the form (cf. Theorem 3, (3.12))

B(zc, f)= fooo {(l —cs) i (se )" (me)” {<1 —Z>n—€_z/c} } dm(s)
n=0

n!

+f(0) e~

= [ LB e.em)— =T dim(s) + f(0) e~
0

_ jm B(z: ¢, =) dm(s). (3.18)
0
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The last integral in (3.18) exists since (cf. (3.13))

B(z;c,e )= 0(s) if s— o0.

Now, (3.13) implies

A 1/c © 1—
B(z;c, f) =J e > dm(s) +J e [e™) —e=2] £ e~ dm(s)
0 1/c 1 — CU(S)

which gives (3.16) respectively

. © 1—c¢s
Bz )= f)=] e o e dns)

+ foo (e~ — e~ dm(s)
1/c

= II(Z’ C) + 12(27 C)
and
1B(z; ¢, /) — [(2) < (2, ¢)| + [y(z, ). (3.19)

It is easy to check that

IL,(z, ¢)] < 2e =% jw \dm(s)| (3.20)

1/c

so that we only have to estimate I(z, ¢). If we rewrite I,(z, ¢) to

['e) z/c
1,(z, ¢) = L/ (1—cs) e < f ) dt> dm(s)

0

z/c o0
:J e“<[ (1 —cs) e vz=erl dm(s)> dt
1

0 Jc

we get with z=x + iy (the integrand is entire with respect to 7)

x/c ['e)
Ii(z,¢)= fo e ! <J (1 —cs) e v@Ix—etl dm(s)> dt

1/c

y/c . o) .
+ ie_x/cf e ¥ <J (1 —cs) e Ly —eil dm(s)> dt
0 1e

=1,(x, c)+ eI (iy, c). (3.21)
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With u(s)={§ (1 —cu) dm(u) (note that u(s) is bounded for s>! and
|v'(s)] = —v'(s)) the estimate

f (1 —cs) e™vOx=<t] ()
1/c

[eesran-o(2)

1
<‘/1(00)+/1 <c>
joo U,(S) e—v(s)[x—ct] </.L(S) —u <1>> ds

1/c Cc

1 1

<‘ﬂ(00)+ﬂ <C>’ + ‘ﬂ(f)—ﬂ ()

4
u(o0) —p <i>

1
) é € |:a OO:|
C
follows, so that we finally get

+(x—ct)

<d,

|Il(xa C)| < dl

(3.22)

The estimate

J (1 —cs) e 2Oy =<l gm(s)
1/c

<fuer— (2) o= o o ()

1/c

M 1
M S‘M(OO)—u ()] (1 +d2'y'>,
C C C

uls) —pu <i>

clutmr-a(})

M= max
se[1l/c, 0]
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implies

i 0l < )~ 1) (24, 2D) (323)

4

so that

2
s uter ([ (2o 2 2)es] a2
is valid. Now, (3.20) and (3.24) imply inequality (3.17) of the theorem. To
finish the proof let us choose ¢ >0 so that |u(s) —u(s*)| <e& for arbitrary
>0 and all s, s*>1. This is always possible since the existence of the
integrals [¢° s* dm(s), k=0, 1, is assumed (cf. (3.2)). Now, estimate (3.17)
immediately shows the rest of the theorem. ||

Remark 9. 1Tt is easily checked that the class of functions (1.6)
examined by W. A. J. Luxemburg in connection with Abel series (cf. [2]
resp. Remark 2) generates convergent B-series B(z;c, f) and B(z;c, f).
With help of the representation

fe=J(

it can be shown that (for sufficient small ¢>0) f(z) is approximated
uniformly by B(z; ¢, f) or B(z; ¢, f) on half planes Rz > x,> —1 also.

joo | —e—=t

e ds> du(t)
0 t
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