On the Uniform Approximation of a Class of Analytic Functions by Bruwier Series

F. Vogl¹

Insitut für Analysis und Technische Mathematik, University of Technology, 1040 Vienna, Austria

Communicated by Guillermo López Lagomasino

Received May 10, 1999; accepted in revised form July 17, 2000; published online November 28, 2000

For a class of analytic functions f(z) defined by Laplace-Stieltjes integrals the uniform convergence on compact subsets of the complex plane of the Bruwier series (B-series) $\sum_{n=0}^{\infty} \lambda_n(f) \frac{(z-nc)^n}{n!}$, $\lambda_n(f) = f^{(n)}(nc) + cf^{(n+1)}(nc)$, generated by f(z) and the uniform approximation of the generating function f(z) by its B-series in cones $|\arg z| \leq \varphi < \frac{\pi}{2}$ is shown. © 2000 Academic Press

1. INTRODUCTION

In order to solve the difference-differential equation $\sum_{k=0}^{m} \alpha_k f^{(k)}(z - (m-k)c) = 0$, $\alpha_k \in \mathbb{C}$, $c \neq 0$ L. Bruwier [1] has used series of the form

$$f(z) = \sum_{n=0}^{\infty} \lambda_n \frac{(z - nc)^n}{n!} = \sum_{n=0}^{\infty} \lambda_n b_n(z).$$
(1.1)

If (see [1])

$$\lambda = \limsup_{n \to \infty} |\lambda_n|^{1/n} < \frac{1}{e |c|}$$
(1.2)

this series converges uniformly on compact subsets of the complex plane \mathbb{C} so that the sum f(z) is an entire function. If $\lambda > \frac{1}{e|c|}$ the series is divergent, whereas with $\lambda = \frac{1}{e|c|}$ different cases can occur. In a paper about series of the form (1.1)—called Bruwier series—O. Perron [3] pointed out that Bruwier has used the uniqueness of expansion (1.1) in his studies without any proof. Therefore in [3] subsequently the uniqueness was proven and the following characterization of all entire functions f(z) with a representation (1.1) was given.

¹ Partially supported by the Austrian Science Foundation Project P12176-MAT.

THEOREM 1 [O. Perron]. The entire function f(z) can be represented by a convergent B-series with $\lambda < \frac{1}{e |c|}$ if and only if the inequality

$$|f^{(n)}(cnx)| \leq k \left(\frac{\alpha}{|c|} e^{-x}\right)^n, \quad 0 < \alpha < 1, \quad k > 0$$
 (1.3)

is satisfied for all $x \in [0, 1]$ and $n \in \mathbb{N}_0$.

Remark 1. A completely different characterization of those entire functions f(z) with a representation (1.1) will be shown in Section 2 of this paper.

Now, it is easily shown that if an entire function f(z) has a representation (1.1) then the coefficients have the form

$$\lambda_n(f) = f^{(n)}(nc) + cf^{(n+1)}(nc), \qquad n \in \mathbb{N}_0$$
(1.4)

e.g. all entire functions of exponential type $\sigma < \frac{1}{|c|}$ have convergent resp. Mittag-Leffler-summable representations (1.1) (see [6]).

Because of (1.4) each function—even not entire ones—can be associated with a formal B-series

$$B(z; c, f) = \sum_{n=0}^{\infty} \lambda_n(f) \frac{(z - nc)^n}{n!}$$
(1.5)

generated by f(z) if the coefficients $\lambda_n(f)$ are defined. If a B-series converges at a point $z_0 \in \mathbb{C}$ then the series converges uniformly on compact subsets of \mathbb{C} and the sum B(z; c, f) is an entire function. Of course, if f(z) is not entire we have $B(z; c, f) \neq f(z)$. In Section 3 (Theorem 4) it will be shown that for a class of functions analytic in the half plane $\Re z > 0$, which can be represented by Laplace–Stieltjes integrals, B(z; c, f) (resp. a slightly modificated B-series, cf. (3.10)) converges for all c > 0 and approximates the generating function f(z) uniformly on cones $|\arg z| \leq \varphi < \frac{\pi}{2}$ if c > 0 is sufficiently small.

Remark 2. In [2] W. A. J. Luxemburg discussed the approximation of functions of the form

$$f(z) = z \int_0^1 \frac{d\mu(t)}{1+zt},$$
 (1.6)

 $\mu(t)$ a Lebesgue–Stieltjes measure of finite total variation on [0, 1], by Abel series. For small c > 0 the Abel series of f(z) approximates f(z) uniformly

in half planes $\Re z \ge x_0 > -1$. According to Sheffers classification of sequences of polynomials (see [5]) the interpolation polynomials of Abel

$$a_0(z) \equiv 1$$
$$a_n(z) = \frac{z(z - nc)^{n-1}}{n!}, \qquad n \in \mathbb{N}$$

and the Bruwier polynomials

$$b_n(z) = \frac{(z-nc)^n}{n!}, \qquad n \in \mathbb{N}_0$$

belong to the same class of Sheffer polynomials (see [6]). Therefore it is not surprising that similar results can be proven for B-series as well as Abel series.

2. REPRESENTATION OF ENTIRE FUNCTIONS BY B-SERIES

This problem is discussed very extensively in papers [3] and [6]. For the reader's convenience only the most important results are summarized in this section: The polynomials $b_n(z) = (z - nc)^n/n!$ are Sheffer polynomials with the generating function

$$\frac{e^{zw(t)}}{1+cw(t)} = \sum_{n=0}^{\infty} t^n b_n(z).$$
(2.1)

Here w(t) is the absolutely smallest root of the transcendental equation $we^{cw} = t$ which can be expanded into a power series of the form

$$w(t) = \sum_{n=1}^{\infty} \frac{(-nc)^{n-1}}{n!} t^n.$$
 (2.2)

The radius of convergence is equal to $\frac{1}{e |c|}$. If \mathbf{K}_t is the circle $|t| < \frac{1}{e |c|}$ then \mathbf{K}_t is mapped conformal to the compact convex domain $w(\mathbf{K}_t)$ bounded by the points w with $|cwe^{cw+1}| = 1$, $\Re cw \ge -1$. At $t = -\frac{1}{ec} w(t)$ has a bifurcation point although the series (2.2) is convergent at this point. If $|t| < \frac{1}{e |c|}$ (2.1) implies

$$e^{zw} = (1 + cw) \sum_{n=0}^{\infty} (we^{cw})^n b_n(z).$$
(2.3)

If f(z) is an entire function of exponential type which has a conjugate indicator diagram $D(f) \subset w(\mathbf{K}_t)$ then the well known Pólya-representation of f(z) implies

$$f(z) = \frac{1}{2\pi i} \oint_{\Gamma} e^{zw} F(w) dw$$

$$= \frac{1}{2\pi i} \sum_{n=0}^{\infty} b_n(z) \oint_{\Gamma} (1 + cw) (w e^{cw})^n F(x) dw$$

$$= \sum_{n=0}^{\infty} \lambda_n(f) b_n(z)$$
(2.4)

with the coefficients

$$\lambda_n(f) = f^{(n)}(nc) + cf^{(n+1)}(nc)$$

= $\frac{1}{2\pi i} \oint_{\Gamma} (1 + cw)(we^{cw})^n F(w) dw$ (2.5)

and the Laplace-Borel transform $F(w) = \sum_{n=0}^{\infty} \frac{n! f_n}{w^{n+1}}$ of the entire function $f(z) = \sum_{n=0}^{\infty} f_n z^n$. Γ is a contour in $w(\mathbf{K}_t)$ containing D(f) in its interior. This result can be summarized in the following.

THEOREM 2 (see [6]). Each entire function f(z) of exponential type having a conjugate indicator diagram which is contained in the compact convex domain $w(\mathbf{K}_t)$ bounded by the points w satisfying $|cwe^{cw+1}| = 1$, $\Re cw \ge -1$, can be expanded into a convergent B-series.

Remark 3. Because of Theorem 2 we now have a second characterization of all those entire functions which can be expanded into a convergent B-series, completely different from Perron's one mentioned in the introduction.

Remark 4. Conversely, the sum of convergent B-series is an entire function of exponential type whose conjugate indicator diagram lies in $w(\mathbf{K}_t)$.

3. B-SERIES OF A CLASS OF ANALYTIC FUNCTIONS

Let \mathscr{K} be the class of all analytic functions f(z) given by the Laplace-Stieltjes integral

$$f(z) = \int_0^\infty e^{-zs} \, dm(s), \tag{3.1}$$

where m(s) is a complex function of bounded variation on $[0, \infty)$. That f(z) determines the coefficient $\lambda_0(f) = f(0) + cf'(0)$ in addition the existence of the first moment of m(s) is assumed, which means the integrals

$$M_k = \int_0^\infty s^k \, dm(s), \qquad k = 0, \, 1 \tag{3.2}$$

converge. Since the abscissa σ_c of convergence and σ_a of absolute convergence are not positive each function $f(z) \in \mathcal{H}$ is analytic in the half plane $\Re z > 0$ so that all coefficients $\lambda_n(f)$ are defined and a (formal) B-series—called B-series B(z; c, f) generated by f(z)—can be associated with f(z). Now, from c > 0 and $f(z) \in \mathcal{H}$ follows that

$$\lambda_n(f) = \int_0^\infty \lambda_n(e^{-zs}) \, dm(s) = \int_0^\infty (1 - cs)(-se^{-cs})^n \, dm(s) \tag{3.3}$$

so that we have

$$B(z; c, e^{-zs}) = (1 - cs) \sum_{n=0}^{\infty} (-se^{-cs})^n b_n(z).$$

Because of $0 \le se^{-cs} \le \frac{1}{ec}$ the B-series converges for all $s \ge 0$ and the sum $B(z; c, e^{-zs})$ is given by

$$B(z; c, e^{-zs}) = \begin{cases} e^{-zc}, & 0 \le s < \frac{1}{c} \\ 0, & s = \frac{1}{c} \\ \frac{1 - cs}{1 - cv(s)} e^{-zv(s)}, & s > \frac{1}{c} \end{cases}$$
(3.4)

where v(s) is the unique real solution of the equation

$$ve^{-cv} = se^{-cs}, \qquad s \ge \frac{1}{c},$$

$$(3.5)$$

satisfying $0 \le v(s) \le \frac{1}{c}$ and $\lim_{s \to (1/c)+} v(s) = \frac{1}{c}$. Furthermore, because of $e^{-cv}v' = \frac{1-cs}{1-cv}e^{-cs} < 0$ for all $s > \frac{1}{c}$ we have

$$\lim_{s \to \infty} v(s) = 0. \tag{3.6}$$

Remark 5. (3.4) implies $\lambda_n(e^{-z/c}) = 0$ for all $n \in \mathbb{N}_0$ and $c \in \mathbb{C}$. But there is no non-trivial entire function f(z) of exponential type $\sigma < \frac{1}{|c|}$ so that $\lambda_n(f) = 0$ for all *n*. Therefore, the representation of entire functions of exponential type $\sigma < \frac{1}{|c|}$ by convergent resp. Mittag-Leffler summable B-series is unique so that these functions are a uniqueness class for the interpolation problem

$$\lambda_n(f) = l_n, \qquad n \in \mathbb{N}_0, \tag{3.7}$$

 $\{l_n\}$ a given sequence of complex numbers (see [6] and [7]). In accordance with (3.4) $B(z; c, e^{-zs})$ has a (removable) discontinuity at $s = \frac{1}{c}$ so that the integral in

$$B(z; c, f) = \sum_{n=0}^{\infty} \lambda_n(f) \ b_n(z) = \sum_{n=0}^{\infty} b_n(z) \int_0^\infty (1 - cs)(-se^{-cs})^n \ dm(s)$$
$$= \int_0^\infty \sum_{n=0}^\infty (1 - cs)(-se^{-cs})^n \ b_n(z) \ dm(s)$$
$$= \int_0^\infty B(z; c, e^{-zs}) \ dm(s)$$

which we get if we exchange summation and integration is not defined if m(s) is discontinuous at $s = \frac{1}{c}$. It is easy to relieve oneself of this restriction by the following method (cf. also [4] or [7]): If we take the expression

$$f(z) = \alpha_0 + \sum_{n=1}^{\infty} \alpha_n \left(1 - \frac{z}{nc}\right)^n + \alpha_{\infty} e^{-z/c}$$

in place of the B-series then because of

$$\left(1 - \frac{z}{nc}\right)^n = \frac{n!}{(-nc)^n} b_n(z) \tag{3.8}$$

we get (see also Remark 7)

$$\alpha_{0} = \lambda_{0}(f)$$

$$\alpha_{n} = \frac{(-nc)^{n}}{n!} \lambda_{n}(f - \alpha_{\infty}e^{-z/c}) = \frac{(-nc)^{n}}{n!} \lambda_{n}(f), \quad n \in \mathbb{N}$$

$$\alpha_{\infty} = f(0) - \sum_{n=0}^{\infty} \alpha_{n}$$
(3.9)

and finally

$$f(z) = \lambda_0(f)(1 - e^{-z/c}) + \sum_{n=1}^{\infty} \lambda_n(f) \frac{(-nc)^n}{n!} \left[\left(1 - \frac{z}{nc} \right)^n - e^{-z/c} \right] + f(0) e^{-z/c} = \lambda_0(f)(1 - e^{-z/c}) + \sum_{n=1}^{\infty} \lambda_n(f) \left[b_n(z) - \frac{(-nc)^n}{n!} e^{-z/c} \right] + f(0) e^{-z/c}.$$
(3.10)

Now, each $f \in \mathcal{K}$ generates a series of the form (3.10) which we again call a B-series $\hat{B}(z; c, f)$.

Remark 6. If the B-series B(z; c, f) converges, obviously

$$\hat{B}(z; c, f) = B(z; c, f) + [f(0) - B(0; c, f)] e^{-z/c}$$
(3.11)

is valid, that means if B(z; c, f) = f(z) then follows $\hat{B}(z; c, f) = B(z; c, f) = f(z)$ so that the series $\hat{B}(z; c, f)$ can be seen as a special kind of summation of B-series.

Remark 7. Because of $|(1 - \frac{z}{nc})^n - e^{-z/c}| \le |\frac{z}{c}|^2 e^{|z/c|}/n$ the expansion (3.10) of an entire function f(z) can be interpreted also as the subtraction of factors in the B-series for $f(z) - f(0) e^{-z/c}$ which improves the convergence.

Now, we can prove the following

THEOREM 3. For each real c > 0 and $z \in \mathbb{C}$ the B-series

$$\hat{B}(z; c, e^{-zs}) = (1 - cs) \left\{ 1 - e^{-z/c} + \sum_{n=1}^{\infty} \frac{(nc)^n}{n!} (se^{-cs})^n \times \left[\left(1 - \frac{z}{nc} \right)^n - e^{-z/c} \right] \right\} + e^{-z/c}$$
(3.12)

generated by e^{-zs} converges uniformly and absolutely with respect to real $s \ge 0$. Furthermore, we have

$$\hat{B}(z; c, e^{-zs}) = \begin{cases} e^{zs}, & 0 \le s \le \frac{1}{c} \\ \frac{1 - cs}{1 - cv(s)} \left[e^{-zv(s)} - e^{-z/c} \right] + e^{-z/c}, & s > \frac{1}{c} \end{cases}$$
(3.13)

where v(s) is the unique real solution of the equation $ve^{-cv} = se^{-cs}$, $s \ge \frac{1}{c}$, satisfying $v(s) \le \frac{1}{c}$.

Proof. It is easy to check the uniform and absolute convergence of B-series (3.12), so that we only have to show formula (3.13). For $0 \le s < \frac{1}{c}$ the B-series

$$B(z; c, e^{-zs}) = (1 - cs) \sum_{n=0}^{\infty} (-se^{-cs})^n b_n(z)$$
(3.14)

represents (cf. (3.4)) the function e^{-zs} . If z = 0 we have $B(0; c, e^{-zs}) = 1$ which together with (3.11), immediately implies $\hat{B}(z; c, f) = e^{-zs}$ if $0 \le s \le \frac{1}{c}$. For $s > \frac{1}{c}$ the series (3.14) represents in accordance with (3.4) the function $\frac{1-cs}{1-cv(s)}e^{-zv(s)}$ so that again with (3.11)

$$\hat{B}(z; c, e^{-zs}) = \frac{1 - cs}{1 - cv(s)} \left[e^{-zv(s)} - e^{-z/c} \right] + e^{-z/c}$$

follows.

Remark 8. Because of the uniform convergence in $s \ge 0$ $\hat{B}(z; c, e^{-zs})$ is continuous also at $s = \frac{1}{c}$, which can also be seen directly from (3.13).

The main result of the paper is the following.

Theorem 4. If $f(z) \in \mathcal{K}$ the B-series

$$\hat{B}(z; c, f) = \sum_{n=0}^{\infty} \lambda_n(f) \frac{(-nc)^n}{n!} \left[\left(1 - \frac{z}{nc} \right)^n - e^{-z/c} \right] + f(0) e^{z/c}, \qquad 0^0 := 1$$
(3.15)

generated by f(z) converges for each c > 0 absolutely and uniformly on compact subsets of the complex plane. In the half plane $\Re z > 0$

$$\hat{B}(z; c, f) = f(z) + e^{-z/c} \int_{1/c}^{\infty} \left\{ \frac{1 - cs}{1 - cv(s)} \left[e^{(z/c)(1 - cv(s))} - 1 \right] + 1 - e^{(z/c)(1 - cs)} \right\} dm(s),$$
(3.16)

and the estimate

$$\begin{aligned} |\hat{B}(z;c,f) - f(z)| &\leq \left| \mu(\infty) - \mu\left(\frac{1}{c}\right) \right| \left[d_1 + \left(\frac{|\Im z|}{c} + d_2 \frac{|\Im z|^2}{c^2}\right) e^{-\Re z/c} \right] \\ &+ 2e^{-\Re z/c} \int_{1/c}^{\infty} |dm(s)| \end{aligned}$$
(3.17)

$$d_1, d_2 > 0, \qquad \mu(s) = \int_0^s (1 - cu) \, dm(u), \qquad \mu(\infty) = M_0 - cM_1,$$

are valid. Furthermore, if $c \to 0 + \hat{B}(z; c, f)$ tends to f(z) uniformly in each cone $|\arg z| \leq \varphi < \frac{\pi}{2}$.

Proof. If $f(z) \in \mathcal{K}$ we have

$$\lambda_n(f) = (-1)^n \int_0^\infty (1 - cs)(se^{-cs})^n \, dm(s)$$

which together with

$$s^{n+1}e^{-cns} \leqslant \frac{2}{c}(ec)^{-n}$$

immediately implies

$$|\lambda_n(f)| \leq \frac{3}{(ec)^n} \int_0^\infty |dm(s)|.$$

From this inequality and $|(1 - \frac{z}{nc})^n - e^{-z/c}| \leq |\frac{z}{c}|^2 e^{|z/c|}/n$ follows that the B-series $\hat{B}(z; c, f)$ generated by f(z) converges absolutely and uniformly on compact subsets of \mathbb{C} . Therefore the sum $\hat{B}(z; c, f)$ is an entire function of the form (cf. Theorem 3, (3.12))

$$\hat{B}(z; c, f) = \int_{0}^{\infty} \left\{ (1 - cs) \sum_{n=0}^{\infty} (se^{-cs})^{n} \frac{(nc)^{n}}{n!} \left[\left(1 - \frac{z}{nc} \right)^{n} - e^{-z/c} \right] \right\} dm(s) + f(0) e^{-z/c} = \int_{0}^{\infty} \left[\hat{B}(z; c, e^{-zs}) - e^{-z/c} \right] dm(s) + f(0) e^{-z/c} = \int_{0}^{\infty} \hat{B}(z; c, e^{-zs}) dm(s).$$
(3.18)

The last integral in (3.18) exists since (cf. (3.13))

$$\hat{B}(z; c, e^{-zs}) = O(s)$$
 if $s \to \infty$.

Now, (3.13) implies

$$\hat{B}(z; c, f) = \int_0^{1/c} e^{-zs} dm(s) + \int_{1/c}^\infty \left\{ \frac{1-cs}{1-cv(s)} \left[e^{-zv(s)} - e^{-z/c} \right] + e^{-z/c} \right\} dm(s)$$

which gives (3.16) respectively

$$\hat{B}(z; c, f) - f(z) = \int_{1/c}^{\infty} \frac{1 - cs}{1 - cv(s)} \left[1 - e^{-(s/c)(1 - cv(s))} \right] e^{-zv(s)} dm(s)$$
$$+ \int_{1/c}^{\infty} \left(e^{-z/c} - e^{-zs} \right) dm(s)$$
$$= I_1(z, c) + I_2(z, c)$$

and

$$|\hat{B}(z;c,f) - f(z)| \le |I_1(z,c)| + |I_2(z,c)|.$$
(3.19)

It is easy to check that

$$|I_2(z, c)| \le 2e^{-\Re z/c} \int_{1/c}^{\infty} |dm(s)|$$
(3.20)

so that we only have to estimate $I_1(z, c)$. If we rewrite $I_1(z, c)$ to

$$I_{1}(z, c) = \int_{1/c}^{\infty} (1 - cs) e^{-zv(s)} \left(\int_{0}^{z/c} e^{-t(1 - cv(s))} dt \right) dm(s)$$
$$= \int_{0}^{z/c} e^{-t} \left(\int_{1/c}^{\infty} (1 - cs) e^{-v(s)[z - ct]} dm(s) \right) dt$$

we get with z = x + iy (the integrand is entire with respect to t)

$$I_{1}(z, c) = \int_{0}^{x/c} e^{-t} \left(\int_{1/c}^{\infty} (1 - cs) e^{-v(s)[x - ct]} dm(s) \right) dt$$

+ $ie^{-x/c} \int_{0}^{y/c} e^{-it} \left(\int_{1/c}^{\infty} (1 - cs) e^{-iv(s)[y - ct]} dm(s) \right) dt$
= $I_{1}(x, c) + e^{-x/c} I_{1}(iy, c).$ (3.21)

With $\mu(s) = \int_0^s (1 - cu) dm(u)$ (note that $\mu(s)$ is bounded for $s \ge \frac{1}{c}$ and |v'(s)| = -v'(s)) the estimate

$$\begin{split} \int_{1/c}^{\infty} (1-cs) e^{-v(s)[x-ct]} dm(s) \\ &= \left| \int_{1/c}^{\infty} e^{-v(s)[x-ct]} d\left(\mu(s) - \mu\left(\frac{1}{c}\right)\right) \right| \\ &\leq \left| \mu(\infty) + \mu\left(\frac{1}{c}\right) \right| \\ &+ (x-ct) \left| \int_{1/c}^{\infty} v'(s) e^{-v(s)[x-ct]} \left(\mu(s) - \mu\left(\frac{1}{c}\right)\right) ds \right| \\ &\leq \left| \mu(\infty) + \mu\left(\frac{1}{c}\right) \right| + \left| \mu(\zeta) - \mu\left(\frac{1}{c}\right) \right| \\ &\leq d_1 \left| \mu(\infty) - \mu\left(\frac{1}{c}\right) \right|, \, \zeta \in \left[\frac{1}{c}, \infty\right] \end{split}$$

follows, so that we finally get

$$|I_1(x,c)| \leq d_1 \left| \mu(\infty) - \mu\left(\frac{1}{c}\right) \right| \int_0^{x/c} e^{-t} dt$$

$$\leq d_1 \left| \mu(\infty) - \mu\left(\frac{1}{c}\right) \right|.$$
(3.22)

The estimate

$$\begin{split} \int_{1/c}^{\infty} (1-cs) e^{-iv(s)[y-ct]} dm(s) \\ \leqslant \left| \mu(\infty) - \mu\left(\frac{1}{c}\right) \right| + |y-ct| \int_{1/c}^{\infty} |v'(s)| \left| \mu(s) - \mu\left(\frac{1}{c}\right) \right| ds \\ \leqslant \left| \mu(\infty) - \mu\left(\frac{1}{c}\right) \right| + \frac{M}{c} |y-ct| \leqslant \left| \mu(\infty) - \mu\left(\frac{1}{c}\right) \right| \left(1 + d_2 \frac{|y|}{c}\right), \\ M &= \max_{s \in [1/c, \infty]} \left| \mu(s) - \mu\left(\frac{1}{c}\right) \right| \end{split}$$

implies

$$|I_1(iy,c)| \leq \left|\mu(\infty) - \mu\left(\frac{1}{c}\right)\right| \left(\frac{|y|}{c} + d_2 \frac{|y|^2}{c^2}\right)$$
(3.23)

so that

$$|I_{1}(z, c)| \leq \left|\mu(\infty) - \mu\left(\frac{1}{c}\right)\right| \left[d_{1} + \left(\frac{|y|}{c} + d_{2}\frac{|y|^{2}}{c^{2}}\right)e^{-x/c}\right]$$
(3.24)

is valid. Now, (3.20) and (3.24) imply inequality (3.17) of the theorem. To finish the proof let us choose c > 0 so that $|\mu(s) - \mu(s^*)| < \varepsilon$ for arbitrary $\varepsilon > 0$ and all $s, s^* \ge \frac{1}{c}$. This is always possible since the existence of the integrals $\int_0^\infty s^k dm(s), k = 0, 1$, is assumed (cf. (3.2)). Now, estimate (3.17) immediately shows the rest of the theorem.

Remark 9. It is easily checked that the class of functions (1.6) examined by W. A. J. Luxemburg in connection with Abel series (cf. [2] resp. Remark 2) generates convergent B-series B(z; c, f) and $\hat{B}(z; c, f)$. With help of the representation

$$f(z) = \int_0^1 \left(\int_0^\infty \frac{1 - e^{-zst}}{t} e^{-s} \, ds \right) d\mu(t)$$

it can be shown that (for sufficient small c > 0) f(z) is approximated uniformly by B(z; c, f) or $\hat{B}(z; c, f)$ on half planes $\Re z \ge x_0 > -1$ also.

REFERENCES

- L. Bruwier, Sur une équation aux dérivées et aux différences mélées, Mathesis 47 (1933), 96–105.
- W. A. J. Luxemburg, On an infinite series of Abel occuring in the theory of interpolation, J. Approx. Theory 13 (1975), 363–374.
- 3. O. Perron, Über Bruwiersche Reihen, Math. Z. 45 (1939), 127-141.
- R. Schnabl, Über Bruwiersche Reihen mit nicht negativen Koeffizienten, Mh. Math. 95 (1983), 57–65.
- 5. I. M. Sheffer, Some problems of polynomial sets of type zero, *Duke Math. J.* 5 (1939), 590-622.
- F. Vogl, Über eine Verallgemeinerung Bruwierscher Reihen, Sitzungsberichte Österr. Akad. Wiss., Math.-Naturw. Kl. 186 (1978), 351–372.
- 7. F. Vogl, Über ein spezielles Interpolationsproblem, Glasnik Math. 28 (48) (1993), 235-240.